

ESI-CIL Nuclear Governance Project Conference Series Small Modular Nuclear Reactors: The Outlook for Deployment Jen Tanglin Hotel, Singapore, 8th November 2017

Advances in Small Modular Reactor Design and Technology Development for Near-term Deployment

Jointly presented by:

M. Hadid Subki Project Manager, SMR Technology Development Frederik Reitsma Project Manager, HTGR Technology Development

Nuclear Power Technology Development Section Division of Nuclear Power, Department of Nuclear Energy

Status and major accomplishment in Member States

SMR: definition & rationale of developments

Advanced Reactors to produce up to 300 MW(e), built in factories and transported as modules to sites for installation as demand arises.

A nuclear option to meet the need for flexible power generation for wider range of users and applications

Economic

- Lower Upfront capital cost
- · Economy of serial production

Modularization

- Multi-module
- Modular Construction

Flexible Application

- Remote regions
- Small grids

Smaller footprint

• Reduced Emergency planning zone

Re for

Replacement for aging fossil-fired plants

Better Affordability

Shorter construction time

Wider range of Users

Site flexibility

Reduced CO₂ production

Integration with Renewables

Salient Design Characteristics

Simplification by Modularization and System Integration

Multi-module Plant Layout Configuration

Underground construction for enhanced security and seismic

Enhanced Safety Performance through Passive System

- Enhanced severe accident features
- Passive containment cooling system
- Pressure suppression containment

Image courtesy of BWX Technology, Inc.

SMRs for immediate & near term deployment^{O Years}

Water cooled SMRs

CAREM SMART ACP100

NuScale

EM²

Gas cooled SMRs

Liquid metal cooled SMRs

Water cooled SMRs (Examples)

CAREM

Image Courtesy of CNEA, Argentina

Under Construction Integral PWR type SMR

Naturally circulation

- 30 MW(e) / 100 MW(th)
- Core Outlet Temp: 326°C
- Fuel Enrichment: 3.1% UO₂
- In-vessel control rod drive mechanisms
- Self-pressurized system
- Pressure suppression containment system
- Target commissioning: October 2018

Image Courtesy of KAERI, Korea

Licensed/Certified Integral PWR type SMR Forced circulation

- 100 MW(e) / 330 MW(th)
- Core Outlet Temp: 323°C
- Fuel Enrichment: 5% UO₂
- Multi-purpose application: electricity production, sea water desalination, district heating and process heat for industries
- Passive safety systems along with severe accident mitigation features
- Standard Design Approval: 4 July 2012

ACP100

Image Courtesy of CNNC, China

Basic Design Integral PWR type SMR Forced circulation

- 100 MW(e) / 310 MW(th)
- Core Outlet Temp: 323°C
- Fuel Enrichment: (2-4)% UO₂
- Underground nuclear island and spent fuel poolenhanced protection against external hazards
- Containment vessel installed in water pool with fully passive safety facilities
- Modules per plant: (1 8)
- Undertaking IAEA's Generic Reactor Safety Review.

NuScale

Image Courtesy of NuScale Power, USA

Under development Integral PWR type SMR Naturally circulation

- 50 MW(e) / 160 MW(th) per module
- Core Outlet Temp: 302°C
- Fuel Enrichment: 4.95% UO₂
- Modules per plant: 12
- Containment vessel immersed in reactor pool that provide unlimited coping time
- Underground installment of containment vessel
- Submit Design Certification Review Application: 12/2016

Marine-based SMRs (Examples)

KLT-40S

ACPR50S

FLEXBLUE

SHELF

Floating Power Units (FPU)

Compact-loop PWR

- 35 MW(e) / 150 MW(th)
- Core Outlet Temp.: 316°C
- Fuel Enrichment: 18.6%
- FPU for cogeneration
- Without Onsite Refuelling
- Fuel cycle: 36 months
- Spent fuel take back
- Advanced stage of construction, planned commercial start: 2019 – 2020

FPU and Fixed Platform Compact-loop PWR

- 60 MW(e) / 200 MW(th)
- Core Outlet Temp.: 322°C
- Fuel Enrichment: < 5%
- FPU for cogeneration
- Once through SG, passive safety features
- Fuel cycle: 30 months
- To be moored to coastal or offshore facilities
- Completion of conceptual design programme

Transportable, immersed nuclear power plant

PWR for Naval application

- 160 MW(e) / 530 MW(th)
- Core Outlet Temp.: 318°C
- Fuel Enrichment 4.95%
- Fuel Cycle: 38 months
- passive safety features
- Transportable NPP, submerged operation
- Up to 6 module per on shore main control room

Transportable, immersed NPP

Integral-PWR

- 6.4 MW(e) / 28 MW(th)
- 40,000 hours continuous operation period
- Fuel Enrichment: < 30%
- Combined active and passive safety features
- Power source for users in remote and hard-to-reach locations;
- Can be used for both floating and submerged NPPs

Images reproduced courtesy of OKBM Afrikantov, CGNPC, DCNS, and NIKIET

SMR for Non-Electric Applications

System-integrated Modular Advanced ReacTor (SMART)

Electricity and Fresh Water Supply for a City of 100,000 Population
 Suitable for Small Grid Size or Distributed Power System

High Temperature Gas-cooled Reactor Technology Development for Near-term Deployment

High Temperature Gas Cooled SMRs (Examples)

Image Courtesy of INET, China

Modular Pebble Bed High Temperature Gas Cooled Reactor

Helium/Graphite cooled

- 210 MW(e) / 500 MW(th)
- Core Outlet Temp: 750°C
- Fuel Enrichment: 8.5% UO₂ TRISO coated particle
- No. of fuel spheres: 420,000 /module
- Modules per plant: 2
- Advanced stage of construction- expected to be commissioned by 2018

GTHTR300

Image Courtesy of JAEA, Japan

Prismatic High Temperature Gas Cooled Reactor

Helium/Graphite cooled

- 100-300 MW(e) / 600 MW(th)
- Core Outlet Temp: 850-950°C
- Fuel Enrichment: 14 % UO₂ TRISO ceramic coated particle
- Fuel temperature limit: 1600°C
- Modules per plant: 4
- Inherent safety features
- Multi-purpose application: power generation, hydrogen production, process heat, steelmaking, desalination and district heating

HTMR100

Image Courtesy of STL, South Africa

High temperature Gas Cooled Reactor

Helium cooled / graphite moderated

- 35 MW(e) / 100 MW(th) per module
- Core Outlet Temp: 750°C
- Fuel Enrichment: 15% Th/Pu, <10% U₂₃₅ Th/LEU and Th/HEU
- Module per plant: (4-8) pack
- Number of Fuel units: ~150,000 pebbles
- Better load following capability and flexibility in multi-module configuration

EM²

Image Courtesy of General Atomics, USA

High Temperature Gas Cooled Fast Reactor

Helium cooled

- 240 MW(e) and 500 MW(th)
- Refuelling cycle: 30 years
- Core Outlet Temp: 850°C
- Fuel enrichment: 1% U₂₃₅ -1% Pu, MA coated particle
- Efficiency: 48%
- Fully enclosed in an underground containment
- · Utilization of spent fuel
- Simplified power conversion system and 30% reduction in material requirements than that of current NPPs

Other Generation IV SMRs (Examples)

PRISM

4S

SVBR100

Image Courtesy of GE Hitachi, USA

Power Reactor Innovative Small Modular

Liquid Sodium-cooled Fast **Breeder Reactor**

- 311 MW(e) / 840 MW(th) ٠
- Core Outlet Temp: 485°C
- Fuel Enrichment: 26% Pu. ٠ 10% Zr
- Underground containment ٠ on seismic isolators
- For complete recycling of • plutonium and spent nuclear fuel

Image Courtesy of TOSHIBA, Japan

Super Safe Small Simple Sodium-cooled Fast Reactor

- Fuel Cycle: 30 years ٠
- 10 MW(e) / 30 MW(th)
- Core Outlet Temp: 510°C
- Fuel Enrichment < 20% .
- Negative sodium void ٠ reactivity
- Hybrid of active and passive ٠ safety features
- Designed for remote locations and isolated islands, close to towns

Image Courtesy of AKME Engineering, Russia

Heavy Metal Liquid Cooled Fast Reactor 100 MW

Lead Bismuth Eutectic cooled Fast Reactor

- 101 MW(e) / 280 MW(th)
- Core Outlet Temp: 490°C
- Fuel Enrichment 16.5%
- Fuel Cycle: 8 years
- Hybrid of active and passive safety features
- Prototype nuclear cogeneration plant to be built in Dimitrovgrad, Ulvanovsk

Image Courtesy of Terrestrial Energy, Canada

Integral Molten Salt Reactor

Molten Salt Reactor

- 80, 300 and 600 MW(th)
- Core Outlet Temp: 700°C
- Fuel Cycle: 7 years
- MSR-Burner: Efficient burner of LEU
- MSR-breeder: Thorium breeder
- Ideal system for consuming existing transuranic wastes (Long lived waste)
- Passive decay heat removal in situ without dump tanks

Development Status of HTGRs

Wealth of past experience

- substantial technology basis
- test reactors in Japan and China
- ready for commercial deployment

• HTR-PM construction of a commercial demonstration plant

modular 2 x 250MWth operation in 2018 Shidao Bay, Shandong province, China

HTGRs - benefits

- Higher (^{20-50%}) efficiency in electricity generation than conventional nuclear plants due to higher coolant outlet temperatures
- Potential to participate in the complete energy market with cogeneration and high temperature process heat application
 - Process steam for petro-chemical industry and future hydrogen production
 - Market potential substantial and larger than the electricity market
 - Allows flexibility of operation switching between electricity and process heat
- Significantly improved safety characteristics with no early large release possible
 - Decay heat removal by natural means only, i.e. no meltdown
 - No large release radioactivity contained in coated particle fuel
 - EPZ can be at the site boundary
- Position close to markets or heat users
 - Savings in transmission costs
- Can achieve higher fuel burnup (80-200 GWd/t)
 - Flexible fuel cycle and can burn plutonium very effectively

Inherent Safety Characteristics 60 Years

Ceramic coated particle fuel retains radioactive materials up to and above 1800°C

Inherent Safety Characteristics 60 Years

Heat removed passively without primary coolant – all natural means

Inherent Safety Characteristics 60 Years

Coated particles stable to beyond maximum accident temperatures

NO Early or Large Radioactivity Release

Interest in HTGRs

- 14 member states in the TWG-GCRs
- Active projects
 - China (HTR-10 and HTR-PM)
 - Japan (HTTR and hydrogen project)
 - USA, South Africa, Korea, Russian Federation
 - EU research projects

Newcomer countries:

- Indonesia
 - Indonesia completed the concept design and sa 10MW(th) experimental power reactor
 - Ideal technology for deployment on remote areas / islands
- Saudi Arabia
 - signed an MoU with China for HTR-PM deployment
 - The use of 210 MW(e) HTGR for cogeneration of electricity and industrial process heat, e.g. hydrocarbon and petrochemicals
- Member states that recently expressed interest •
 - Poland new committee to prepare for the possible future implementation of HTGRs
 - Other countries in Asia-Pacific

For inquiries on HTGR, contact: F.Reitsma@iaea.org

Advantages, Issues & Challenges

60 Years

Technology Issues

- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.).
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno Issues

- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology Issues

- Licensability (FOAK designs)
- Non-LWR technologies
- Operability and Maintainability
- Staffing for multi-module plant; Human factor engineering;
- Supply Chain for multi-modules
- Advanced R&D needs

Non-Techno Issues

- Economic competitiveness
- Plant cost estimate
- Regulatory infrastructure
- Availability of design for newcomers
- Physical Security
- Post Fukushima action items on institutional issues and public acceptance

Key Challenge: Construction Management

Reactor footprints ?? Important to costs?

- The Vogtle 3 and 4 Nuclear power plant USA
 - 2 units = 2220 MWe

HTR-PM footprint ...

• The HTR-PM - (Two-reactor unit) = 210MWe

Footprints compared ...

- 2 units = 2220 MWe : 16 units = 3360 MWe
- Cost of land and infrastructure ...perhaps comparable

Status and major accomplishment in 60 Year Technology Developer Countries

Countries	Recent Milestone
Argentina	CAREM25 is in advanced stage of construction. Aiming for fuel loading & start-up commissioning in 2019
Canada	CNSC is performing design reviews for several innovative SMR designs, mostly non-water cooled, including molten salt reactors (MSR)
China	 HTR-PM is in advanced stage of construction. Commissioning expected in 2018. ACP100 completed IAEA generic reactor safety review. CNNC plans to build ACP100 demoplant in Hainan Provence in the site where NPPs are already in operation. China has 3 floating SMR designs (ACP100S, ACPR50S and CAP-F)
Republic of Korea	SMART (100 MWe) by KAERI certified in 2012. SMART undertakes a pre-project engineering in Saudi Arabia, for near-term construction of 2 units.
Russian Federation	 Akademik Lomonosov floating NPP with 2 modules of KLT40S is in advanced stage of construction. Aiming for commissioning in 2019. AKME Engineering will develop a deployment plan for SVBR100, a eutectic lead bismuth cooled, fast reactor.
United Kingdom	 Rolls-Royce recently introduced UK-SMR, a 450 MW(e) PWR-based design; many organizations in the UK work on SMR design, manufacturing & supply chain preparation Identifying <i>potential</i> sites for future deployment of SMR
United States of America	 The US-NRC has started design review for NuScale (600 MW(e) from 12 modules) from April 2017, aiming for FOAK plant deployment in Idaho Falls. TVA submitted early site permit (ESP) for Clinch River site, design is still open.

Status and major accomplishment in 60 Years Embarking Countries

Countries	Recent Milestone
Saudi Arabia	 Vision 2030 → National Transformation Program 2020: Saudi National Atomic Energy Project: K.A.CARE performs a PPE with KAERI to prepare a construction of 2 units of SMART An MOU between K.A.CARE and CNNC on HTGR development/deployment in KSA
Indonesia	 Through an open-bidding, an experimental 10 MW(th) HTR-type SMR was selected in March 2015 for a basic design work aiming for a deployment in mid 2020s Site: R&D Complex in Serpong where a 30 MW(th) research reactor in operation BAPETEN, the regulatory body has issued a site license
Jordan	 Jordan, Saudi Arabia and Republic of Korea is to conduct a feasibility study for a deployment of SMART in Jordan
Poland	 HTGR for process heat application to be implemented in parallel to large LWRs 10 MW(th) experimental HTGR at NCBJ proposed possibly with EU cooperation
Tunisia	 STEG, the National Electricity and Gas Company is active in performing technology assessment for near-term deployable water-cooled SMRs
Kenya	 Requested support on human capacity building for Reactor Technology Assessment that covers SMRs through IAEA-TC Project, to be implemented in Q1-2018

Summary

- IAEA is engaged to support Member States in SMR Technology Development and has started addressing challenges in applying Design Safety Requirements for NPPs to SMRs
- SMR is an attractive option to enhance energy supply security
 - ✓ In newcomer countries with smaller grids and less-developed infrastructure
 - ✓ In advanced countries for power supplies in remote areas and/or specific applications
- Innovative SMR concepts have common technology development challenges, including regulatory and licensing frameworks
- Studies needed to evaluate the potential benefits of deploying SMRs in grid systems that contain large percentages of renewable energy.
- Studies needed to assess "design standardization" and "target costs" in cogeneration markets, the benefits from coupling with renewables to stabilize the power grid, and impacts on sustainability measures from deployment.

For inquiries on SMR, please contact: Dr. M. Hadid Subki IAEA Nuclear Power Technology Development Section M.Subki@iaea.org

Thank you!

For inquiries on HTGRs, please contact: Mr. Frederik Reitsma IAEA Nuclear Power Technology Development Section F.Reitsma@iaea.org