INTERNATIONAL MARITIME TRANSPORT UNDER CARBON PRICING,

POTENTIAL MERITS AND HAZARDS

Gaudin Antoine 08/03/18, Energy Studies Institute Supervised by Prof. Chai

Introduction

One paradox in shipping?

Large Energy efficiency

Large CO_2 emissions

X 2 1 France

OOCL HONG KONG

MS ORE BRASIL

Ships capable to carry hundreds of thousand tons efficiently

More than 800 mT of CO₂ per year due to international shipping

Introduction

A brief Carbon Pricing history

Theory — SO2 charges — CO2 charges

Post-communist countries

Tax since 1992

European countries

Individual tax from 1990 and global cap-and-trade, since 2005

Arthur Cecil Pigou The Economics of Welfare, 1920 Acid Rain Program, USA

Cap-and-trade since 1994

Kyoto protocol Offsetting since 1994

Introduction Carbon pricing in the aftermath of Paris agreement

Question addressed in our research

- Could we compare carbon taxes and cap-and-trade principles in international shipping?
- Can effects of carbon pricing be quantitatively predicted? Under which conditions?
- How does variation in shipping market affect such policies?

Presentation of subject

Some existing analysis on carbon pricing

Topic addressed	Main Results	References
Importance of marginal cost knowledge, good communication with industries and technologies availability	A good understanding of technologies and market is needed.	Market efficiency and the U.S. market for sulfur dioxide allowances, 2016
Added cost for consumer	Large portion of pass-through cost is sent to final consumer, vary with industries	Ex-post investigation of cost pass-through in the EU ETS, 2015
Effect of carbon pricing on the number of patent submitted	Small push in number of green patents	Environmental policy and directed technological change: evidence from the European carbon market, 2016

Presentation of subject

Literature review on shipping carbon emission

Topic addressed	Main Results	References
Transport cost for final consumer	Freight cost reach up to 10% of total product cost	UNCTAD and OECD yearly reports
Effect of changes in oil price and freight rates	Freight rates are correlated with oil price	Oil Prices and Maritime Freight Rates: An Empirical Investigation, 2010
New technologies adoption	Difficulties on the estimation of new technologies adoptions	Marginal Abatement Costs and Cost Effectiveness of Energy-Efficiency Measures, 2011
Flexibility of the market	21 phases of oversupply and undersupply since 1743	Maritime Economics, 2009

Presentation of subject Literature review on shipping and carbon pricing

Topic addressed	Main Results	References
Effect of fuel cost and freight rate on speed	Higher fuel cost or lower freight rate will induce slow steaming	Effect of high fuel costs on liner service configuration in container shipping, 2008
Effect of carbon pricing on shipping emission	Estimations made on strong assumptions	Modeling the impacts of alternative emission trading schemes on international ship- ping, 2016
Slow steaming, effect on cost of time and emissions	Low effect on cost of time and high reduction in fuel consumption	Regulating speed: a short-term measure to reduce maritime GHG emissions, 2017

Interaction of parameters discussed

Generation of a simple model Main parameters Port A Port B Port C

Different types of ships (Containers, Bulk carriers, Tankers...) associated with different:

Design

Mass carried, in ton $Mass_{carried}$. Design speed, in knot v_0

Fuel consumption, in Ton/day $Fuel_{conso_i}(v_0)$

Markets

Uniform Freight Rate, in \$/mass/distance FR

 ρ_{Port}

10

Port and canal fees factor

Generation of a simple model

Costs and revenue over a voyage

Port A

Port B

Revenue

Transportation of goods

 $Mass_{carried}$. FR. Distance

Costs

Fuel costs $Fuel_{conso}(v).Time_{travel}$

Port, canal fees, cargo handling $Mass_{carried}.FR.Distance.\rho_{Port}$

Other operation and capital expenditure $OPEX_{Other} + CAPEX$

Fuel consumption/CO2 emissions is highly related with the speed

Range of speed (knots)	5000 TEU	8000 TEU	12000 TEU
14-16	2.40	2.25	2.13
16-18	2.70	2.50	2.40
18-20	3.03	2.91	2.74
20-22	3.33	2.95	2.93
22-24	3.50	3.27	2.99
24-26	4.17	4.06	3.95

Personal calculation of b

Optimisation of speed, long term Generation of a simple model period Port B Port A $v_i^* = \left(\frac{v_{0i}^b.Mass_{carried_i}.FR.(1-\rho_{Port})}{b.(Oil_{price} + Price_{CO2}).Fuel_{consol}(v_0)}\right)$ Optimisation of $\frac{\partial \pi}{\partial v} = 0 \quad \longrightarrow \quad$ the route speed: Evaluation of indexes over the years, example of containers: Container price Index, China-Europe, 1994-2018 Index (DWT*V0^3)/Power engine for new built containers West Texas Intermediate, over the period 1994-2018 28000 140 2000 26000 120 1800 24000

More information in annex

Generation of a simple model Adjustment of FR, under carbon tax

Generation of a simple model

Adjustment of FR, under carbon tax

More information in annex

Understand effects of carbon price on various consumers

In shipping, larger ships tend to be more energy efficient

Understand effects of carbon price on various consumers

Shipping trade, weighted by DWT, Container Ship (Fully Cellular)

Two definitions of maritime cap-and-trade (ETS)

Variable free allocations

Free allocation + Added allowance cost

Optimal fuel need of the ship at year N0 equal to 100 ton of fuel per day

Fixed free allocations

x_i is equal for all industries in future formulas

	Free allocation	+	Added allowance cost
0%			100%
<u> </u>		x_i	Total needs of a ship

Two definitions of maritime cap-and-trade (ETS)

Variable free allocations

Fixed free allocations

Free allocation + Added allowance cost

Optimal fuel need of the ship at year N0+1 equal to 120 ton of fuel per day

x_i is equal for all industries in future formulas

	Free allocation	+	Added allowance cost
0%			120%
~			Total needs of a ship

Variable free allocations model

22

Variable free allocations model

$$\left(\frac{Total'_{fuel}}{Total_{fuel}}\right) = \left(1 + \frac{ETS_{price}}{Oil_{price}}\right)^{\frac{1-b}{b}} \cdot \left(\frac{(b-1) + x_i}{(b-1) + x_i \cdot (1 + \frac{ETS_{price}}{Oil_{price}})}\right)^{\frac{b-1}{b}} \cdot \Delta Demand$$

Fixed free allocations model

$$\left(\frac{FR_{ETS}}{FR_{ini}}\right) = \left(\frac{Oil_{price} + ETS_{price}}{Oil_{price_{ini}}}\right)^{\frac{1}{b}} \left(1 - \frac{x_i \cdot ETS_{price}}{(b-1) \cdot Oil_{price_{ini}}}\right)^{\frac{b-1}{b}}$$

b=3 No change in oil price

Fixed free allocations model

$$\left(\frac{Total'_{fuel}}{Total_{fuel}}\right) = \left(Oil_{price} + ETS_{price}\right)^{\frac{1-b}{b}} \left(Oil_{price_{ini}} - \frac{x_i \cdot ETS_{price}}{(b-1)}\right)^{\frac{b-1}{b}} \cdot \Delta Demand$$

Effect of market and cap on ETS price

Fixed free allocations model, variation of ETS permit price (\$/t_{Fuel})

With fixed level of overall cap, ETS effect is highly dependent on the market conditions

If an ETS is adopted, strong needs for stability tools

Effect of slow steaming on carbon pricing

Fixed free allocations model

Lower reduction of CO₂ under conditions of slow steaming, for similar carbon price

Question of new technologies adaptations

Financial condition on the adoption of technology (NVP)

$$\sum_{i=1}^{n_{year}} \frac{Revenue_{Added}}{(1+r)^i} \ge CAPEX$$

 n_{year} Expected year of investment return

CAPEX Initial technology cost

Adoption of new technologies is uneasy, specially for retrofitting, NVP is too simple

If shipping speed and FR are perfectly adapted, carbon pricing cannot directly encourage the adoption of new technologies.

Still, a reduction of CAPEX is possible with investment in low TRL

Rebound effect equal to $\frac{1}{b-1}$

Conclusion

- For similar carbon prices, a cap-and-trade scheme induces higher carbon reduction and a lower cost to final consumer.
- But, a tax is robust and effective in all market conditions, contrary to a closed cap-and-trade scheme.
- If free allocations are based on market needs, all types of shipping markets would have similar reduction of emissions and rise of freight rate due to carbon pricing.
- Surges and falls in potential ETS price can be evaluated, according to shipping market conditions.

Future work

Can we make sure that such policies would not affect in a negative way other emissions (ex: Diesel cars in France)?

Is it possible to quantify research fund effects on the adoption of new technologies?

Can we study carbon leakage, through inland emissions or other way of international transportation?

Could we compare, with same methods, potential carbon offsetting and regulations on ship speed?

Annex I

Estimation of FR

- -WTI (\$ per barrel) is used as an indicator for bunker price (in \$ per ton), (multiplied by 5.21)
- For bulk ships, Bulk dry index is used
- For containers, China Containerized Freight Index from Shanghai exchange, Weighted by a factor, based in 2016, for the obtention of CCFI Asia-Europe
- For VLCC, daily rate in 5 year rent is used, for the period 1997-2018. WS index for the period 1984-1997.

Annex II

Optimisation of speed, personal calculation of optimized speed

Port B

 $v_i^* = \left(\frac{v_{0i}^b.Mass_{carried_i}.FR.(1-\rho_{Port})}{b.(Oil_{price} + Price_{CO2}).(Fuel_{consol}(v_0))}\right)$

Port A

Optimisation of the route speed:

Mass carried proportional to average DWT of the fleet

Fuel consumption is proportional to engine Power, with a linear 5% rise in diesel engine efficiency.

Bunker price proportional to WTI index

FR: China -> Europe (CCFI), fee port =0.5

b=3.2 to 2.9

Annex III

° P≤0.05

- ** P ≤ 0.01
- *** P ≤ 0.001

$$FR_{new} = FR. \left(1 + \frac{Tax_{CO2} + \Delta Oil_{price}}{Oil_{price}}\right)^{\frac{1}{b}}$$

\mathbb{R}^2		confidence interval	Slope	Range of year
27	((0.14,0.26)	0.20	1994-2005
20	((0.19,0.54)	0.36	2005-2012
62	((0.44, 0.62)	0.53	2012-2018
01	((0.00, 0.08)	0.04	1994-2018

Range of year	Slope	95% confidence interval	R^2	р
1985-2003	0.35	(0.21,0.49)	0.10	***
2003-2011	0.53	(0.20,0.86)	0.11	**
2011-2018	0.60	(0.41,0.78)	0.33	***
1985-2018	0.35	(0.26, 0.44)	0.14	***

Range of year	Slope	95% confidence interval	R^2	р
1984-1997	-0.16	(-0.37,0.05)	0.01	ns
1997-2009	0.52	(0.39,0.66)	0.29	***
2009-2018	-0.29	(-0.40,-0.18)	0.20	***
1983-2018	0.32	(0.25,0.39)	0.16	***

Container market

Bulk market

VLCC market

Annex IV

Source: MEPC 72/7/1, INTERTANKO

Remarks on efficiency indexes

Use of Design efficiency index (EIV, as a simplified form of EEDI), is easier to obtain than operational index EEOI (EEDI, with operational parameters)..

EEOI is not a good indicators on emissions.

Under personal model:

 $Fuel_{conso_{i}} = \frac{FR^{\frac{b}{b-1}}.Mass^{\frac{b}{b-1}}_{carried_{i}}.v^{\frac{b}{b-1}}_{0_{i}}.(1-\rho_{Port})^{\frac{b}{b-1}}}{(b(Oil_{price} + Carbon_{price}))^{\frac{b}{b-1}}.Fuel_{conso}(v_{0_{i}})^{\frac{1}{b-1}}}$

Annex V

7.5

Cummulative DWT, in log10 0.0 2.2 7 2.2 7 2.2 7 2.2 7 2.0 7 7 2.0 7 2.0

4.0

10 15 20

Comparison of some indicators in trade

Comparison of AEI and volume of trade, containers, port precision

Comparison of AEI and work, containers, country precision 11 Cummulative work, in log10 10 10 15 25 30 35 40 20 AEI between countries

Comparison of distance and speed, containers, port precision

Annex VI

RMQ: cannot be studied directly there

Some added speed information

Annex VII

Main calculation process I

$$\frac{\partial \pi}{\partial v} = 0 \implies v_i^* = \left(\frac{v_{0i}^b.Mass_{carried_i}.FR.(1-\rho_{Port})}{b.(Oil_{price} + Price_{CO2}).Fuel_{conso_i}(v_0)}\right)^{\frac{1}{b-1}}$$

$$Fuel_{conso_{i}} = \frac{FR^{\frac{b}{b-1}}.Mass_{carried_{i}}^{\frac{b}{b-1}}.v_{0_{i}}^{\frac{b}{b-1}}.(1-\rho_{Port})^{\frac{b}{b-1}}}{(b(Oil_{price} + Carbon_{price}))^{\frac{b}{b-1}}.Fuel_{conso}(v_{0_{i}})^{\frac{1}{b-1}}}$$

Individual daily fuel consumption, a multiplication by (oil price+carbon price) and a coefficient (dependant of b) will provide f, used bellow

Cash flow, inside the fixed allocation model It's development will give the new freight rate, in ETS or carbon tax model

Annex VIII

Main calculation process II,

Example for b=3, and \Demand=1

$$\sum_{i=1}^{Nship'_{used}} Mass_{carried_i}.v_i^{*\prime} \qquad \text{Is the new demand}$$

For b=3, and $\Delta Demand=1$ (conservation of Demand), Rent is a design index

$$\sum_{i=1}^{Nship'_{used}} Rent(i) \cdot \sqrt{\frac{FR_{ETS} \cdot (1-\rho_{Port})}{3 \cdot (Oil_{price} + ETS_{price})}} = \sum_{j=1}^{Nship_{used}} Rent(j) \cdot \sqrt{\frac{FR \cdot (1-\rho_{Port})}{3 \cdot Oil_{price}}}$$

With the equation on FR

$$\sum_{i=1}^{Nship'_{used}} Rent(i).(1 + \frac{ETS_{price}}{Oil_{price}})^{-\frac{1}{3}}.\left(\frac{2+x}{2+x.(1 + \frac{ETS_{price}}{Oil_{price}})}\right)^{\frac{1}{3}} = \sum_{j=1}^{Nship_{used}} Rent(j)$$

Coming back to the total fuel emission:

$$Total'_{Fuel} = \sum_{i=1}^{Nship'_{used}} Rent(i) \cdot \frac{FR^{\frac{3}{2}} \cdot (1 - \rho_{Port})^{\frac{3}{2}}}{(3(Oil_{price}))^{\frac{3}{2}}} \cdot (1 + \frac{ETS_{price}}{Oil_{price}})^{-1} \cdot \left(\frac{2 + x}{2 + x \cdot (1 + \frac{ETS_{price}}{Oil_{price}})}\right)^{1}$$

Total fuel consumption can be compared to the previous one

38